FRM financialriskmeter for Cryptos

Ladislaus von Bortkiewicz Professor of Statistics
Humboldt－Universität zu Berlin
BRC Blockchain Research Center
Ivb．wiwi．hu－berlin．de
Charles University，WISE XMU，NCTU 玉山学者

Money

\square Groucho Marx: „Money frees you from doing things you dislike. Since I dislike doing nearly everything, money is handy."

- David Hume: „Money is () the instrument () to facilitate the exchange of one commodity for another. It is () the oil which renders the motion of the wheels more smooth and easy.
- Friedrich Hayek: „Instead of a national government issuing a specific currency () private businesses should be allowed to issue their own forms of money, deciding how to do so on their own."

CRIX - the Coin

- Smart Contract: Solidity

Create you own wallet!
\square EVM Ethereum Virtual Machine (gas)

- Safemath library

Tail Events (TE)

\square TEs across Cryptos indicate increased risk
\square CoVaR measures joint TEs between 2 risk factors
\square CoVaR and other risk factors?

- TENET Tail Event NETwork risk, Härdle Wang Yu (2017) J E’trics
\square FRM Financial Risk Meter for joint TEs

Эash

Risk, Model Risk, Systemic Risk

The financial cycle and the business cycle are not synchronised, implying that risks can emerge especially in the periods of "disconnect" between the two cycles.", Vítor Constâncio, VP ECB, 2015
"Broadly speaking, model risk can be attributed to either an incorrect model or to an incorrect implementation of a model" , Buraschi and Corielle (2005)
„I know it when I see it", Justice Potter Stewart (1964)

『 Tail Behaviour

- Ultra High Dimensions
\square Nonlinear in Time and Space (=Network)

Risk Measures

- VIX: IV based, does not reflect joint TEs
\square CoVaR concentrates on a pair of risk factors
- CISS, Google trends, SRISK, ...
\square FRM displays the full picture of TE dependencies
- Firamis.de/FRM financialriskmeter

Call and Puts on BTCs

- Listed at Bloomberg since 20200113

Prices from 20200221.1600-20200222.1100
Timestamps precise in the range $1 \mathrm{E}-3 \mathrm{sec}$.
Calls, Puts with maturity 20200228

RIX
RIX

FRM for Cryptos

Outline

1. Motivation \boldsymbol{V}
2. Genesis
3. FRM Framework
4. CoStress ID, Active Set
5. Extension to other asset classes
6. FRM a predictor for recession
7. Conclusions

VaR Value at Risk

\square Probability measure based

$$
\mathrm{P}\left(X_{i, t} \leq \operatorname{VaR}_{i, t}^{\tau}\right) \stackrel{\text { def }}{=} \tau, \tau \in(0,1)
$$

$\square X_{i, t}$ log return of risk factor (company) i at t
\square VaRs (0.99, 0.01) based on RMA, Delta Normal Method

Wolfgang Hatele
 C:ity Yi- Hupun Oien

ludger Orerbeck Efirous
Applied Quantitative
Finance
Tharfocilion

Q
Q Springer

Quantiles and Expectiles

For r.v. Y obtain tail event measure:

$$
q^{\tau}=\arg \min _{\theta} \mathrm{E}\left\{\rho_{\tau}(Y-\theta)\right\}
$$

asymmetric loss function

$$
\rho_{\tau}(u)=|u|^{\alpha}\left|\tau-\mathbf{I}_{\{u<0\}}\right|
$$

$\alpha=1$ for quantiles,
$\alpha=2$ for expectiles

$$
\tau=0.7, \quad N(0,2) \quad \text { Quantile }=3.2
$$

Quantiles and Expectiles

\square Quantiles/Expectiles focus on TEs
\square SRM Spectral Risk Measures

- LAWS algorithm fast and efficient

Figure: Loss function of expectiles and quantiles for $\tau=0.5$ (dashed) and $\tau=0.9$ (solid)

Conditional Value at Risk

\square Adrian and Brunnermeier (2016) introduced CoVaR

$$
\mathrm{P}\left\{X_{j, t} \leq \operatorname{CoVaR}_{j l i, t}^{\tau} \mid X_{i, t}=\operatorname{VaR}^{\tau}\left(X_{i, t}\right), M_{t-1}\right\} \stackrel{\text { def }}{=} \tau,
$$

$\square M_{t-1}$ vector of macro-related variables

- Nonlinear features

Goldman Sachs (Y), Citigroup (X), Conf Bands, Chao et al (2015)
FRM for Cryptos

CoVaR and the magic of joint TEs

- CoVaR technique

$$
\begin{aligned}
& X_{i, t}=\alpha_{i}+\gamma_{i}^{\top} M_{t-1}+\varepsilon_{i, t} \\
& X_{j, t}=\alpha_{j \mid i}+\beta_{j \mid i} X_{i, t}+\gamma_{j \mid i}^{\top} M_{t-1}+\varepsilon_{j, t}
\end{aligned}
$$

『 $F_{\varepsilon_{i, t}}^{-1}\left(\tau \mid M_{t-1}\right)=0$ and $F_{\varepsilon_{i, t}}^{-1}\left(\tau \mid M_{t-1}, X_{i, t}\right)=0$

$$
\begin{aligned}
\widehat{\operatorname{VaR}}_{i, t}^{\tau} & =\widehat{\alpha}_{i}+\widehat{\gamma}_{i}^{\top} M_{t-1} \\
\widehat{\operatorname{CoVaR}}_{j \mid i, t}^{\tau} & =\widehat{\alpha}_{j \mid i}+\widehat{\beta}_{j \mid i} \widehat{\operatorname{VaR}}_{i, t}^{\tau}+\widehat{\gamma}_{j \mid i}^{\top} M_{t-1}
\end{aligned}
$$

CoVaR: First calculate VaRs, then compute the TE given a stressed risk factor.

Linear Quantile Lasso Regression

$$
\begin{equation*}
X_{j, t}^{s}=\alpha_{j, t}^{s}+A_{j, t}^{s \top} t_{j}^{s}+\varepsilon_{j, t}^{s}, \tag{1}
\end{equation*}
$$

- Where $A_{j, t}^{s T} \stackrel{d e}{=}\left[M_{i-1}^{s}, X_{-j, t}^{s}\right]$
$\square X_{-j, t}^{s}$ log returns of all other firms except j at time t
$\square s$ length of moving window
$\square M_{t-1}^{s} \log$ return of macro prudential variable at time $t-1$
\square Application $j=1, \ldots, J, t=2, \ldots, T$

$$
J=100, T=2700, s=63
$$

Lasso Quantile Regression

$$
\begin{equation*}
\min _{\alpha_{j}^{s}, \beta_{j}^{s}}\left\{n^{-1} \sum_{t=s}^{s+(n-1)} \rho_{\tau}\left(X_{j, t}^{s}-\alpha_{j}^{s}-A_{j, t}^{s \top} \beta_{j}^{s}\right)+\lambda_{j}^{s}\left\|\beta_{j}^{s}\right\|_{1}\right\}, \tag{2}
\end{equation*}
$$

\square Check function $\rho_{\tau}(u)=|u|^{c}|1(u \leq 0)-\tau|$,
\square here $c=1,2$ correspond to quantile, expectile regression
$\square \lambda$ creates size of „active set", i.e. spillover
$\square \lambda$ is sensitive to residual size, i.e. TE size
$\square \lambda$ reacts to singularity issues, i.e. joint TEs.

λ Role in Linear Lasso Regression

\square Penalisation (Lagrange) parameter λ, Osborne et al. (2000)
\square Dependence, time-varying, company-specific
\square Size of model coefficients depends on

$$
\lambda=\frac{(Y-X \beta(\lambda))^{\top} X \beta(\lambda)}{\|\beta\|_{1}} \quad \text { Coeff's depend on } \lambda
$$

\square Penalty λ depends on:
\square residual size, condition of design matrix, active set

λ Role in Linear Quantile Regression

- λ size of estimated LQR coefficients Li Y, Zhu JL (2008)

$$
\begin{gathered}
\lambda=\frac{(\alpha-\gamma)^{\top} X \beta(\lambda)}{\|\beta\|_{1}} \longleftarrow \text { Coeff's }(\lambda)^{(\alpha-\gamma)=\tau I(Y-X \beta(\lambda)>0)+(\tau-1) I(Y-X \beta(\lambda)<0)}
\end{gathered}
$$

\square Penalty λ depends on:
\square „residual size", condition of design matrix, active set
\square Average penalty: an indicator for tail risk

$$
F R M_{t} \stackrel{\text { def }}{=} J^{-1} \sum_{j=1}^{J} \lambda_{j t}
$$

\square The FRM time series is ONE index for joint TEs!

λ Selection

\square Generalized approximate cross-validation (GACV)

$$
\min \operatorname{GACV}\left(\lambda_{j}^{s}\right)=\min \frac{\sum_{t=s}^{s+(n-1)} \rho_{\tau}\left(X_{j, t}^{s}-\alpha_{j}^{s}-A_{j, t}^{s, \top} \beta_{j}^{S}\right)}{n-d f}
$$

$\square d f$ „degrees of freedom" \#active set
Coeff's depend on λ
$\square \lambda$ is a function of j, t
\square Distribution of $\lambda_{j, t}$

- ID the TE drivers

FRM COOES firamis app hu Berlin app

FRM for Cryptos

Methodology

\square Obtain risk driver list of all historically active index members
\square Download daily rates in same currency (USD)
\square Sort market cap decreasingly (to select J biggest risk drivers)

- Calculate returns
\square On every trading day,
- Select J biggest risk driver's returns over s trading days
- Attach returns of macroeconomic risk factors
- Calculate λ for all companies
- Calculate average λ, etc.
- Store active set

Data

■ 100 largest U.S. and Canadian publicly traded financial institutions
■ 6 macro related variables
Q Quantile level $\tau=0.05, \tau=0.01, \ldots$

- Time frame: 2000-2019

■ Macroeconomic risk factors:
CBOE Volatility Index
S\&P 500
REIT Index
3M Treasury Constant Maturity Rate
10Y Treasury Constant Maturity Rate
Moody's Seasoned Baa Corp Bond Yield Spread

Distributional characteristics

『 Identifying companies CoStress $\tau=0.05 \quad J=25$

Distributional characteristics

- Identifying Crypto Currency CoStress $\tau=0.05 \quad J=15$

2018
Distributional characteristics of $\lambda_{j}, j=1, \ldots J$

Crypto's CoStress

- February 12th, 2018:

High CoStress: XMR, XML, DASH, EOS, ETH, LTC

Low CoStress: XEM, NEO, LSK, BTC, BCH

Visualising the Active Set: Total Degree Centrality

- September 5th, 2008, FRM@Americas, J=25

One day ahead of the Lehman Brother

Visualising the Active Set: Total Degree Centrality

- January 20th, 2012, FRM@Europe, J=25

Visualising the Trend: FRM the Boxplot

- January 2020 to May 2020, FRM@Europe

FRM for Cryptos

FRM@Crypto
FRM@Crypto, tau = 0.05, J=8-15

FRM@Crypto - Network Total Degree Centrality

$\square \tau=0.05,12$ February 2018

FRM@Crypto - Network Total Degree Centrality

『 $\tau=0.05,27$ August 2019

Visualising the Active Set: FRM@Crypto the Movie

20200315 FRH: D. 10707

Network analysis of FRM from 03 March 2020 to 17 May 2020

FRM scaled to risk

- February 2020 to May 2020, FRM@Crypto

FRM for Cryptos

FRM@Crypto Out-Degree Centrality

Out-Degree Centrality. Date: 2020-03-01

Lambda. Date: 2020-03-01

Left-hand side panel: \# of outbounds links of BTC, ETH, XRP, BCH, BSV, LTC, EOS, BNB, XTZ, LIN, ADA, XLM, XMR, TRX, HT. Right-hand side panel: FRM index over time.

Data from 01 March 2020 to 17 May 2020

FRM for Cryptos

FRM@Crypto In-Degree Centrality

Left-hand side panel: \# of inbound links of BTC, ETH, XRP, BCH, BSV, LTC, EOS, BNB, XTZ, LIN, ADA, XLM, XMR, TRX, HT. Right-hand side panel: FRM index over time.

Data from 01 March 2020 to 17 May 2020

FRM for Cryptos

FRM@Crypto Betweenness Centrality

Left-hand side panel: „bridge" behaviour measure for BTC, ETH, XRP, BCH, BSV, LTC, EOS, BNB, XTZ, LIN, ADA, XLM, XMR, TRX, HT. Right-hand side panel: FRM index over time.

Data from 01 March 2020 to 17 May 2020

FRM for Cryptos

FRM@Crypto Closeness Centrality

Left-hand side panel: fastness in influencing of BTC, ETH, XRP, BCH, BSV, LTC, EOS, BNB, XTZ, LIN, ADA, XLM, XMR, TRX, HT. Right-hand side panel: FRM index over time.

Data from 01 March 2020 to 17 May 2020

FRM for Cryptos

FRM@Crypto Eigenvector Centrality

Eigenvector Centrality. Date: 2020-03-01

Lambda. Date: 2020-03-01

Left-hand side panel: normalised eigenvector centrality of BTC, ETH, XRP, BCH, BSV, LTC, EOS, BNB, XTZ, LIN, ADA, XLM, XMR, TRX, HT. Right-hand side panel: FRM index over time. Data from 01 March 2020 to 17 May 2020

FRM for Cryptos

FRM@Crypto Centrality contribution

\square Does cointegration hold for periods of financial distress?

FRM@Crypto Centrality contribution criterion

- Macroeconomic risk factors:
- US dollar index (average of USD vs main non-crypto currencies)
- Yield level in USD (carry component for the drift)
- VIX
- CVIX (same as VIX, but on major fiat currencies)
- VCRIX
- S\&P500

FRM@Crypto

\square Macroeconomic risk factors:

- US dollar index (average of USD vs main non-crypto currencies)
- Yield level in USD (carry component for the drift)
- VIX
- CVIX (same as VIX, but on major fiat currencies)
- VCRIX
- S\&P500

What are the right macroeconomic risk factors per asset class?

FRM@Crypto Adjacency Matrix

$\tau=0.05,12$ February 2018| | $\stackrel{u}{\infty}$ | 志 | $\stackrel{\stackrel{\rightharpoonup}{x}}{x}$ | 픙 | $\stackrel{4}{4}$ | $\underset{ـ}{u}$ | 을 | \sum_{λ} | on | $\begin{aligned} & \mathbb{\Sigma} \\ & \bar{\Sigma} \\ & \hline \end{aligned}$ | $\sum_{\underset{X}{x}}^{\sum_{2}}$ | $\stackrel{\text { I }}{\substack{\Delta}}$ | \sum_{x}^{∞} | $\underset{3}{3}$ | 준 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BTC | | | 0.13 | | 0.04 | 0.10 | 0.00 | | 0.04 | 0.07 | -0.12 | | 0.13 | | 0.00 | 9 |
| ETH | | | 0.03 | 0.07 | | 0.24 | 0.10 | | | 0.01 | | 0.04 | | 0.13 | 0.02 | 8 |
| XRP | | | | 0.33 | -0.03 | | -0.03 | 0.35 | 0.07 | | 0.17 | | | -0.13 | | 7 |
| BCH | | 0.18 | -0.03 | | | | 0.08 | | | -0.05 | 0.00 | 0.45 | 0.32 | | 0.01 | 8 |
| ADA | | | | | | | | | | | | | | | | 0 |
| LTC | 0.26 | 0.23 | | | | | | | 0.02 | 0.16 | 0.00 | | -0.01 | | | 6 |
| NEO | | | 0.07 | 0.24 | 0.00 | 0.18 | 0.23 | 0.02 | | 0.15 | 0.01 | | | | 0.02 | 9 |
| XLM | | | | | | | | | | | | | | | | 0 |
| EOS | | | | | | | | | | | | | | | | 0 |
| MIOTA | | | | | | | | | | | | | | | | 0 |
| XEM | | 0.12 | 0.19 | 0.04 | | 0.06 | 0.10 | 0.19 | | | 0.13 | | | | 0.06 | 8 |
| DASH | | | 0.10 | Q. 12 | 0.40 | | | | | 0.04 | 0.07 | | 0.25 | | -0.14 | 7 |
| XMR | | | 0.01 | 0.23 | 0.10 | | 0.18 | | | 0.08 | | | | 0.05 | 0.02 | 7 |
| LSK | 1.12 | | 0.06 | 0.20 | | | -0.52 | -0.03 | | | | 0.11 | 0.16 | | | 7 |
| TRX | | | | | | | | | | | | | | | | 0 |
| | 2 | 3 | 8 | 7 | 5 | 4 | 8 | 4 | 3 | 7 | 7 | 3 | 5 | 3 | 7 | |

FRM@Crypto Adjacency Matrix with Macro Variables

$\tau=0.05,12$ February 2018

Few traditional macro variables explain crypto currency tail behaviour

FRM@Crypto

■ Adjacency Matrix 12 February 2018

BCH	0.23				ETH	0.07
NEO	0.18		BCH	0.32	XEM	0.04
ADA	0.10		DASH	0.25		
MIOTA	0.08	XMR	LSK	0.16		
LSK	0.05	+	BTC	0.13		
TRX	0.02		LTC	-0.01		
XRP	0.01					

XMR in high Co-Stress

Extensions

- Use national or EU data to construct localised FRM
- Adaptive LASSO

■ Global contagion effect of FRMs
\square Relate Network Centrality to Max/Min CoStress nodes
\square Besides equal weights, weights by degree of centrality
\square LASSO in Time and Space
\square Aggregate global FRMs, across asset classes

- Price Vectors

Conclusions

\checkmark FRM financialriskmeter $=$ Flexible Risk Meter
\square can be tuned to any asset class and to any TE risk
\square reacts to coagulation of risk emitters via active set

FRM in FinTech, Cryptos, ...

Statistics of
Financial
Markets
a
a

Vol 1. 2019 on Crypto Currencies

EDITORS: Wolfgang Karl Härdle and Steven Kou

Digital Finance

Smart Data Analytics, Investment Innovation, and Financial Technology

Springer

Michael Althof

Alla Petukhina

Vanessa Guarino Wolfgang K Härdle Rui REN

Ang LI

Souhir Ben Amor AlexTruesdale

Anna Shchekina

Ilyas Agakishiev

References

- Adrian J, Brunnermeier M (2016) CoVaR, American Economic Review, 106 (7): 1705-41, DOI: 10.1257/aer. 20120555
. Buraschi A, Corielle F (2005). Risk management of time-inconsistency: Model updating and recalibration of no-arbitrage models. J Banking and Finance 29: 2883-907
- Chao SK, Härdle WK, Wang W (2015) Quantile Regression in Risk Calibration. in Handbook for Financial Econometrics and Statistics, Cheng-Few Lee, ed., Springer Verlag, DOI: 10.1007/978-1-4614-7750-1_54.
- Härdle WK, Wang W, Zbonakova L (2018) Time Varying Lasso, in Applied Quantitative Finance 3rd ed, (Chen, Härdle, Overbeck eds.) Springer Verlag, ISBN 978-3-662-54486-0
- Keilbar G (2018) Modeling systemic risk using Neural Network Quantile Regression, MSc thesis
- Li Y, Zhu JL (2008) L1 Norm Quantile Regression, J Comp Graphical Statistics 17(1): 1-23
- Osborne MR, Presnell B, Turlach BA (200) J Comp Graphical Statistics Vol. 9, 319-337

FRM for Cryptos

FRM financialriskmeter for Cryptos

Ladislaus von Bortkiewicz Professor of Statistics Humboldt－Universität zu Berlin BRC Blockchain Research Center Ivb．wiwi．hu－berlin．de Charles University，WISE XMU，NCTU 玉山学者

Expectile as Quantile

$e_{\tau}(Y)$ is the τ-quantile of the cdf T, where

$$
T(y)=\frac{G(y)-x F(y)}{2\{G(y)-y F(y)\}+\left\{y-\mu_{Y}\right\}}
$$

and

$$
G(y)=\int_{-\infty}^{y} u d F(u)
$$

Company List (as of 20180701)

O FRM X's

Symbol	Name	LastSale	MarketCap	ADR TSO	IPOyear	Sector	Industry	Summary Quote
WFC	Wells Fargo \& Company	51.88	$2.65 \mathrm{E}+11$	n / a	n / a	Finance	Major Banks	http://www.nasdaq.com/symbol/wfc
JPM	J P Morgan Chase \& Co	62.81	$2.31 \mathrm{E}+11$	n / a	n / a	Finance	Major Banks	$\underline{\text { http://www.nasdaq.com/symbol/jpm }}$
BAC	Bank of America Corporation	16.08	$1.67 \mathrm{E}+11$	n / a	n / a	Finance	Major Banks	$\underline{\text { http://www.nasdaq.com/symbol/bac }}$
C	Citigroup Inc.	50.12	$1.49 \mathrm{E}+11$	n / a	n / a	Finance	Major Banks	http://www.nasdaq.com/symbol/c
AIG	American International Group, Inc.	59.75	73911497592	n/a	n / a	Finance	Property-Casualty Insurers	http://www.nasdaq.com/symbol/aig
GS	Goldman Sachs Group, Inc. (The)	169.84	72442901924	n / a	1999	Finance	Investment Bankers/Brokers/Service	http://www.nasdaq.com/symbol/gs
USB	U.S. Bancorp	41.05	71803718395	n / a	n / a	Finance	Major Banks	http://www.nasdaq.com/symbol/usb
AXP	American Express Company	64.42	63405122360	n / a	n / a	Finance	Finance: Consumer Services	$\underline{\text { http://www.nasdaq.com/symbol/axp }}$
MS	Morgan Stanley	30.5	59054830750	n / a	n / a	Finance	Investment Bankers/Brokers/Service	http://www.nasdaq.com/symbol/ms
BLK	BlackRock, Inc.	330.16	54848693699	n / a	1999	Finance	Investment Bankers/Brokers/Service	http://www.nasdaq.com/symbol/blk
MET	MetLife, Inc.	44.37	49322866962	n / a	2000	Finance	Life Insurance	http://www.nasdaq.com/symbol/met
PNC	PNC Financial Services Group, Inc. (The)	91.6	46515010272	n / a	n / a	Finance	Major Banks	http://www.nasdaq.com/symbol/pnc
BK	Bank Of New York Mellon Corporation (The)	38.82	42428419621	n / a	n/a	Finance	Major Banks	http://www.nasdaq.com/symbol/bk
SCHW	The Charles Schwab Corporation	30.79	40535754347	n / a	n / a	Finance	Investment Bankers/Brokers/Service	http://www.nasdaq.com/symbol/schw
COF	Capital One Financial Corporation	68.55	36471702025	n / a	1994	Finance	Major Banks	http://www.nasdaq.com/symbol/cof
PRU	Prudential Financial, Inc.	76.92	34537080000	n / a	2001	Finance	Life Insurance	http://www.nasdaq.com/symbol/pru
TRV	The Travelers Companies, Inc.	109.04	33172017516	n / a	n / a	Finance	Property-Casualty Insurers	http://www.nasdaq.com/symbol/trv
BX	The Blackstone Group L.P.	27.29	32092061544	n / a	2007	Finance	Investment Managers	http://www.nasdaq.com/symbol/bx
CME	CME Group Inc.	88.93	30079362252	n/a	2002	Finance	Investment Bankers/Brokers/Service	http://www.nasdaq.com/symbol/cme

FRM equations
FRM for Cryptos

